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Abstract 

The new tomographic reconstruction program TARDIS 

being implemented in the Main Injector and Recycler requires 

accurate longitudinal charge profiles measured by resistive 

wall current monitors (RWCM). A basic theory of signal 

attenuation due to skin effect resistances in coaxial 

transmission lines is presented to explain signal distortion from 

the RWCMs. The theory is used to generate a finite impulse 

response function that can be convoluted with a distorted 

signal to reproduce the original signal. Knowledge of the exact 

cable properties, (lengths, attenuation) in the line is essential 

and should be checked for the Main Injector and Recycler. 
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Introduction 

TARDIS, a longitudinal phase space tomographic reconstruction programme, requires longitudinal charge 

profiles of the beam. These are measured using a resistive wall current monitor (RWCM) in the beam 

pipe, the signal is then digitized by a scope [1]. The RWCM signal is transmitted along a coaxial line to 

the scope and during this transmission is distorted. Higher frequency signals propagate more quickly 

down real transmission lines than low-frequency signals and are attenuated more quickly. This 

separation and attenuation of different frequencies by a transmission line causes signal distortion. 

Longer transmission lines and/or higher frequency signals distort more.  

The single biggest source of distortion is the skin effect causing an increase in the effective 

resistance of the conductors as frequency increases. Sometimes the rounding off of a sharp step in a 

cable is called dispersion, but dispersion is distortion caused by different frequencies moving at different 

speeds. Most cable distortion, for practical cables, is caused by attenuation of higher frequencies, not by 

dispersion, and what dispersion there is works to slow down the low-frequency signals, not the high-

frequency signals.  

A method that includes cable dispersion would be carried out in the following way: the signal 

would be Fourier transformed to find its frequency content, a Hilbert transform is then required to 

handle the negative frequency components and preserve causality, then each frequency component can 

be propagated along the line for the particular cable properties and propagation mode, then the inverse 

transforms calculated to retrieve the propagated signal in the time domain. This analysis is not done 

here as it is assumed dispersion is not a significant factor compared to skin effect losses.   

Skin Effect Distortion 

Skin-effect distortion is a well-known effect and can be corrected for with some knowledge of the line. 

Previous work [2, 3, 4] has used the following formula for the integrated charge,   , obtained from a 

delta-function input to the line [5] : 

  ( )        (
            

√  
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where   is the cable length and   is the attenuation per 100 unit lengths (feet in [5]) at 1GHz in dB. The 

derivative of (1) is taken to find the delta function response, which can then be convoluted with initial 

signal to find the distorted signal. Alternatively, the distorted signal can be convoluted with the inverse 

response to recover the original signal. However, in deriving (1) (see Appendix) the delta function 

response,  ( ), is arrived at and can be used from the start: 
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where   is the attenuation constant for a particular frequency  . These formula assume negligible 

dielectric losses in the line and the attenuation varies as √  giving universal curves which can be scaled 
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by a particular cable’s parameters. For the Heliax LDF5-50A cables used for the RWCM with parameters 

given in Table 1 this is a good approximation. 

Parameter Symbol Unit Value 

Inductance          0.2 

Inner Conductor radius   mm 4.55 

Inner Conductor Material   Copper Tube 

Attenuation (VSWR @ 1GHz)   dB 100     4.115 

Table 1: Relevant Parameters for LDF5-50A Heliax Cable [6]. 

The value for   is calculated from the manufacturer’s attenuation in dB in the following way1: 
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Example Delta Function Response 

For the Main Injector it will be assumed the line comprises of two coaxial cables described in Table 2 [7], 

giving the impulse response as in Figure 1.2 

Cable Type Length 
(m) 

Attenuation 
(dB m-1 VSWR3 @ 1GHz) 

LDF5-50A 39.32 0.004115 

RG58 2.44 0.705 

Table 2: Assumed cable properties for MI RWCM transmission line. 

 

Figure 1: Impulse response of cabling described in Table 2. 

                                                           
1
 We are tacitly assuming all the attenuation is contained in  ,  i.e. just considering frequency response distortion.  

2
 These numbers should be checked as the reference is over ten years old 

3
 Voltage Standing Wave Ratio 
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Inverse Response 

An initial signal convoluted with the impulse response gives the distorted signal. To recover the original 

signal from the distorted signal it must be convoluted with the inverse response. This is done by creating 

a lower triangular convolution matrix from the impulse response and finding it’s inverse. For example 

the convolution of a discrete signal,                    with             is simply: 

 

There are simple methods for finding the inverse of a lower triangular matrix like the one in the left 

hand side of the above expression. An example finite impulse response (FIR) is shown in Figure 2. Most 

of the interesting features happen on very short time scales. The actual form of the response depends 

on the time step considered.  

   

Figure 2: FIR of the MI RWCM Signal Transmission Line using a ps (left) and 100 ps (right) time step. 

A distorted signal can now be recovered by convolution with the FIR. If just the distortion of the 

signal is required (and not the absolute amount of attenuation) the integrated response may be 

normalised to 1 ensuring the initial and final signals have the same integrated charge. An example 

distorted signal from the MI RWCM and after correction is shown in Figure 3, the trailing edges are 

reduced and the peak intensity is raised. 

 

Figure 3: RWCM signal from MI scope (red) and after cable distortion correction (green). 
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Conclusion 

A simple transmission line theory has been used to explain signal distortion due skin effect attenuation 

in coaxial lines. These attenuations are assumed to be proportional to the square root of the signal 

frequency allowing for universal curves to be calculated that define the impulse response. The inverse 

impulse response can be found, giving a FIR filter that can be used to recover the undistorted signal. The 

exact attenuation for the MI and Recycler RWCM should be checked. This procedure should be 

incorporated in to the pre-processing modules of TARDIS to give more realistic input profiles for 

tomographic reconstruction. 

Appendix Derivation of Equation 1  

A coaxial cable can be represented by a network of four basic components, shown in Figure 4. The 

distributed resistance of the conductors is represented by a series resistor,  ,   is a series inductor 

representing the distributed inductance.  The capacitance between the two conductors is represented 

by a shunt capacitor  . The conductance   of the dielectric material separating the two conductors is 

represented by a shunt resistor between the signal wire and the return wire. 

 

Figure 4: Schematic layout of coaxial line.  

From the well-known solution to this system, (known as the telegraph equations) the transfer 

function for an input signal voltage    and output signal voltage    along a cable of length   terminated 

in its characteristic impedance is: 

  

  
               (     ) 

where   is the propagation constant. The value of   is derived from properties of the cable and can be 

expressed in terms of the attenuation,  , and phase shift,  , coefficients that are functions of the 

angular frequency,    of the signal: 

  √(     )(     )   ( )     ( )  

With skin effect losses and zero dielectric loss,    ,   is: 

  (      
 
   )

 
 
  



Beams-doc-4436 
 

6/7 
 

where      and   depends on the conductor radius,  , conductivity,   and permeablility  , as: 
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The inverse Laplace Transform of the transfer function is the impulse response of the line. One method 

to calculate this is to series expand the square root term in the propagation constant: 
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The first term is the delay term and the rest describe the signal distortion. As the third order term is 

independent of   it can be used to estimate the validity of taking only the first two terms by considering 

the ratio:  
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in specific examples. For example, using the parameters from Table 1 gives this ratio to be of the order 

       m-1 at a GHz, indicating the first two terms are an acceptable approximation, the transfer 

function is now: 
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with   √    and    √  ⁄ . The inverse Laplace Transform of the       term is a delta function 

delaying the signal by     , the transform of the other term is a standard one that can be looked up 

giving the impulse response as: 

 ( )  
  

 √    
  ⁄

 
 (

  
  

)
  
                    

 ( )                                                           

By collecting real and imaginary parts for the propagation constant the real part   can be used to 

substitute for   (with      ): 

  
 

   
√
 

 
  (   

 

   
√
 

 
)  



Beams-doc-4436 
 

7/7 
 

  
 √  

   
  

 ( )  
  

 √     ⁄
 

    

      

As well as the impulse response the step response,  ( ), can be found by taking the inverse 

transform of     times the transfer function (now the 
 

 
      term gives a unit step function): 
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As a check differentiating  ( ) with respect to t should give  ( ), which it does. To get Equation (1) 

assume the ratio of    to √  is a constant, which is a good approximation for many coaxial cables, 

choose    GHz, convert to dB using a factor of 8.69588 and leave in a factor of √ : 

 ( )       (
             

√ (    )
)    

where    is the transit time of the cable and   is expressed in dB per 100 unit lengths, feet in[5].  
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